InterviewSolution
Saved Bookmarks
| 1. |
`lim_(yto0) ((x+y)sec(x+y)-xsecx)/(y)` is equal to |
|
Answer» Correct Answer - A `underset(yto0)lim{(x{sec(x+y)-secx})/(y)+sec(x+y)}` `=underset(yto0)lim[(x)/(y){(cosx-cos(x+y))/(cos(x+y)cosx)}]+underset(yto0)limsec(x+y)` `=underset(yto0)lim[(x2sin(x+(y)/(2))sin((y)/(2)))/(ycos(x+y)cosx)]+secx` `=underset(yto0)lim[(xsin(x+(y)/(2)))/(cos(x+y)cosx)xx(sin((y)/(2)))/((y)/(2))]+secx` `=xtanxsecx+secx` `=secx(xtanx+1)` |
|