InterviewSolution
Saved Bookmarks
| 1. |
∆LMN ~ ∆PQR, 9 × A(∆PQR) = 16 × A(∆LMN). If QR = 20, then find MN. |
|
Answer» 9 × A(∆PQR) = 16 × A(∆LMN) [Given] ∴ (ΔLMN)/A(PQR) = 9/16 (i) Now, ∆LMN ~ ∆PQR [Given] ∴ (ΔLMN)/A(PQR) = MN2/QR2 (ii) [Theorem of areas of similar triangles] ∴ MN2/QR2 = 9/16 [From (i) and (ii)] ∴MN = QR = 3/4 [Taking square root of both sides] ∴ MN/20 = 3/4 ∴ MN = (20 x 3)/4 ∴ MN = 15 units |
|