1.

∆LMN ~ ∆PQR, 9 × A(∆PQR) = 16 × A(∆LMN). If QR = 20, then find MN.

Answer»

9 × A(∆PQR) = 16 × A(∆LMN) [Given]

∴ (ΔLMN)/A(PQR) = 9/16 (i)

Now, ∆LMN ~ ∆PQR [Given] 

∴ (ΔLMN)/A(PQR) = MN2/QR2 (ii) [Theorem of areas of similar triangles]

∴ MN2/QR= 9/16 [From (i) and (ii)] 

∴MN = QR = 3/4  [Taking square root of both sides] 

 ∴ MN/20  = 3/4 

∴ MN = (20 x 3)/4

 ∴ MN = 15 units



Discussion

No Comment Found

Related InterviewSolutions