1.

`(log x)/x` का उच्चिष्ठ मान ज्ञात कीजिये यदि ` 0 lt x lt infty `

Answer» माना ` y = (log x)/x ` ...(1)
` :. (dy)/(dx) = (xd/(dx) log x - log x d/(dx) x)/x^(2)`
` rArr (dy)/(dx) = (x *1/x - log x)/x^(2) rArr (dy)/(dx) = (1-log x)/x^(2)` ....(2)
तथा ` (d^(2)y)/(dx^(2)) = (x^(2)d/(dx) (1-log x)-(1-log x)d/(dx) x^(2))/x^(4) `
` = (x^(2)(-1/x) - 2x(1 - log x))/x^(4) = - [(3 -2 log x)/x^(3) ] ` ....(3)
फलक के उच्चिष्ठ अथवा निम्निष्ठ मान के लिये
` (dy)/(dx) = 0 rArr (1 - log x)/x^(2) = 0 rArr log x = 1 rArr x = e`
` x = e ` पर , ` (d^(2)y)/(dx^(2)) = - [(3-2 log _(e) e)/e^(3)] = (-1)/e^(3) ` ( ऋण राशि )
अतः x = e पर फलक उच्चिष्ठ है ।
फलक का उच्चिष्ठ मान , समीकरण (1) से
` y = (log_(e)e)/e = 1/e`
` :. ` फलक का उच्चिष्ठ मान ` 1/e`है ।


Discussion

No Comment Found

Related InterviewSolutions