1.

log2 . log25 5 = A) 0 B) 1 C) -1 D) 1/2

Answer»

Correct option is (C) -1

\(log_2\,(log_{25}\,5)\) \(=log_2\,(\frac1{log_{5}\,25})\)   \((\because log_b\,a=\frac1{log_a\,b})\)

\(=log_2\,(\frac1{log_{5}\,5^2})\)

\(=log_2\,(\frac1{2\,log_{5}\,5})\)   \((\because log\,a^n=n\,log\,a)\)

\(=log_2\,(\frac1{2})\)    \((\because log_a\,a=1)\)

\(=log_2\,(2^{-1})\)

\(=-1\,log_2\,2\) = -1

Correct option is C) -1



Discussion

No Comment Found