InterviewSolution
Saved Bookmarks
| 1. |
Mark (√) against the correct answer in the following:Let \(f(x)=\frac{x^2}{(1+x^2)}\) Then, range (f) = ?A. [1, ∞) B. [0, 1) C. [ - 1, 1] D. (0, 1] |
|
Answer» Correct Answer is (B) = [0, 1) \(f(x)=\frac{x^2}{1+x^2}\) ⇒ \(y=\frac{x^2}{1+x^2}\) ⇒ y + yx2 = x2 ⇒ y = x2 (1 - y) ⇒ x = \(\sqrt{\frac{y}{1-y}}\) \(\frac{y}{1-y}\geq 0\) ⇒ y ≥ 0 And 1 - y > 0 ⇒ y < 1 Taking intersection we get range (f) = [0, 1) |
|