1.

Match column-I to column-II standard entropy in KJ/k-molar at 25^(@)C {:("Column-I","Column-II"),(1.DeltaH_(C-C),(p)733.48),(2.DeltaH_(C-H),(q)97.81),(3.DeltaH_(C=C),(r)434.3),(4.DeltaH_(C-=C),(s)454.64),(5.DeltaH_(C=O),(f)804.22):} Using the dat (all values are in KJ/mol at 25^(@)C) given below: {:(DeltaH_("combustion")^(@)("ethane")=-1559.8 "",""DeltaH_("combustion")("ethane")=-1410.9),(DeltaH_("combustion")^(@)("acetylene")=-1299.7 "",""DeltaH_("combustion")("acetaldehyde")=-1192.3),(DeltaH_(f)^(@)CO_(2)(g)=-393.5 "",""DeltaH_(f)^(@) "of" H_(2)O(l)=-285.8),(DeltaH^(@) "for" C_(s) ("graphite") rarr C_(g)=716.68 "","""Bond energy of H-H =435.94"),("Bond energy of O=O=498.94 "","" ):}

Answer»

`{:(,1,2,3,4,5),((A),q,s,r,p,t):}`
`{:(,1,2,3,4,5),((B),r,p,t,q,s):}`
`{:(,1,2,3,4,5),((C),q,p,s,r,t):}`
`{:(,1,2,3,4,5),((D),p,s,q,r,t):}`

Solution :`C_(2)H_(6)(g)+(7)/(2)O_(2)(g) rarr 2CO_(2) + 3H_(2)O(L), "" -1559.5.`
`15559.8 = 2 xx (-285.8)+ 3 xx (-285.8)-DeltaH_(f(C_(2)H_(6))`
`implies "" DeltaH_(f(C_(2)H_(6)) =- 84.6.`

`DeltaH' =0-6 xx BE_(C-H)-BE_(C-C)`
`2XX 716.68 + 3 xx 435.94 - 6BE_(C-H) - BE_(C-C) =- 84.6.`
`6BE_(C-H)+BE_(C-C) = 2741.18 KJ. ""......(i)`
`Ch_(2)CHO + (5)/(2)O_(2) rarr 2CO_(2) + 2H_(2)O, 1192.3.`
`-1192.3 = 2xx (-393.5)+ 2 xx (-285.8)-1192.3`

`DeltaH_(f(CH_(3)CHO)) =- 116.3 KJ.`
`DeltaH'=0-4 xx BE_(C-H)-BE_(C=0)`
`-166.3 =2xx 716.68 + 2 xx 435.94 +(1)/(2) xx 498.94 - 4BE_(C-H) - BE_(C=0) "".....(ii)`

`DeltaH' = 0-2 xx BE_(C=0)`
`716.68 + 498.94 -2 xx BE_(C=0)=- 393.5`
`BE_(C=0)=804.56 KJ. "".....(iii) `
Now we can find all bond energies.


Discussion

No Comment Found