InterviewSolution
Saved Bookmarks
| 1. |
Match the conditions /expression n Column I with statement in Column II `(z ne 0` is a complex number ) |
|
Answer» Correct Answer - `A to q ; B to p` Let z=a+ ib Given `Re(z)=0 rArr a=0` Then `z=ib rArr z^2 =- b^2 or lm(z^(2))=0` Therefore sds`A rarr q` Also, given ,arg (z)`= pi/2` Let `z=r(cos"" pi/4 - I sin""pi/4)` Then `z^2r^2( cos^2 "" pi/4 - sin^2 L"" pi/4)+2 ir^3 ""pi/4 sin "" pi/4` `=ir^2 sin pi//2 = ir^2` Therefore , `Re (z^2)=0 rArr B rArr p.` `rArr a= b= 2 - sqrt(3) " " [ because a, b larr (0,1)] ` |
|