1.

Match the conditions /expression n Column I with statement in Column II `(z ne 0` is a complex number )

Answer» Correct Answer - `A to q ; B to p`
Let z=a+ ib
Given `Re(z)=0 rArr a=0`
Then `z=ib rArr z^2 =- b^2 or lm(z^(2))=0`
Therefore sds`A rarr q`
Also, given ,arg (z)`= pi/2`
Let `z=r(cos"" pi/4 - I sin""pi/4)`
Then `z^2r^2( cos^2 "" pi/4 - sin^2 L"" pi/4)+2 ir^3 ""pi/4 sin "" pi/4`
`=ir^2 sin pi//2 = ir^2`
Therefore , `Re (z^2)=0 rArr B rArr p.`
`rArr a= b= 2 - sqrt(3) " " [ because a, b larr (0,1)] `


Discussion

No Comment Found

Related InterviewSolutions