

InterviewSolution
Saved Bookmarks
1. |
Match the following lists: |
Answer» Correct Answer - `a to p, s;" b" to q,s; " c" to p,r; " d" to s` a. The given lines are concurrent. So, `|{:(3, 1, -4),(1, -2, -6),(lambda, 4, lambda^(2)):}| = 0` `"or " lambda^(2) +2lambda-8 =0` `"or " lambda=2, -4` b. The points are collinear. Hence, `|{:(lambda+1, 1, 1),(2lambda+1, 3, 1),(2lambda+2, 2lambda, 1):}| = 0` `"or " 2lambda^(2) - 3lambda-2 =0 " or " lambda = 2, -(1)/(2)` c. The point of intersection of x-y=1 and 3x+y-5=0 is (1,2). It lines on the line `x+y-1-|(lambda)/(2)| = 0 " "therefore lambda = +-4` d. The midpoint of (1, -2) and (3, 4) will satisfy `y-x-1+lambda=0` `therefore lambda = 2` |
|