1.

[Maths]Topic: Ratio and ProportionHelp!!!If b is the mean proportion between a and c, Prove:Thanks in advance. No Spammimg :)​

Answer»

\texttt{\textsf{\large{\underline{Solution!}}}}

Given:

→ b is the mean proporrtion between a and C.

To Prove:

\tt\implies\dfrac{a^{2}-b^{2}+c^{2}}{a^{-2}-b^{-2}+c^{-2}} = b^{4}

As b is the mean proportion between a and c:

\tt\implies \dfrac{a}{b}=\dfrac{b}{c}

\tt\implies b^{2}=ac

Taking LHS:

\tt=\dfrac{a^{2}-b^{2}+c^{2}}{a^{-2}-b^{-2}+c^{-2}}

\tt=\dfrac{a^{2}-b^{2}+c^{2}}{\dfrac{1}{a^{2}}-\dfrac{1}{b^{2}}+\dfrac{1}{c^{2}}}

\tt=\dfrac{a^{2}-b^{2}+c^{2}}{\dfrac{b^{2}c^{2}-a^{2}c^{2}+a^{2}b^{2}}{a^{2}b^{2}c^{2}}}

\tt=\dfrac{a^{2}b^{2}c^{2}(a^{2}-b^{2}+c^{2})}{b^{2}c^{2}-a^{2}c^{2}+a^{2}b^{2}}

\tt=\dfrac{(ac)^{2}b^{2}(a^{2}-b^{2}+c^{2})}{b^{2}c^{2}-(ac)^{2}+a^{2}b^{2}}

PUT b² = ac:

\tt=\dfrac{b^{4}\cdot b^{2}(a^{2}-b^{2}+c^{2})}{b^{2}c^{2}-b^{4}+a^{2}b^{2}}

\tt=\dfrac{b^{4}\cdot b^{2}(a^{2}-b^{2}+c^{2})}{b^{2}(c^{2}-b^{2}+a^{2})}

\tt=\dfrac{b^{4}(a^{2}-b^{2}+c^{2})}{c^{2}-b^{2}+a^{2}}

\tt=b^{4}

= RHS!

Hence, Proved.

\texttt{\textsf{\large{\underline{Learn More!}}}}

Properties of Ratio and Proportion.

1. Invertendo: If a : b : : c : d then b : a : : d : c

2. Alternendo: If a : b : : c : d then a : c : : b : d

3. COMPONENDO: If a : b : : c : d then (a + b) : b : : (c + d) : d

4. Dividendo: If a : b : : c : d then (a - b) : b : : (c - d) : d

5. Componendo and Dividendo: If a : b : : c : d then (a + b) : (a - b) : : (c + d) : (c - d)

6. Convertendo: If a : b : : c : d then a : (a - b) : : c : (c - d)



Discussion

No Comment Found

Related InterviewSolutions