1.

n3 – n is divisible by 6, for each natural number n ≥ 2

Answer»

Let P(n) : n3 – n

Step 1 : 

P(2): 23 – 2 = 6 which is divisible by 6. So it is true for P(2). 

Step 2 : 

P(A): k3 – k = 6λ. Let it is be true for k ≥ 2 

⇒ k3 = 6λ + k … (i)

Step 3 : 

P(k + 1) = (k + 1)3 – (k + 1) 

= k3 + 1 + 3k2 + 3k – k – 1 = k3 – k + 3(k2 + k) 

= k3 – k + 3(k2 + k) = 6λ + k – k + 3(k2 + k) 

= 6λ + 3(k2 + k) [from (i)] 

We know that 3(k+ k) is divisible by 6 for every value of k ∈ N. 

Hence P(k + 1) is true whenever P(k) is true.



Discussion

No Comment Found