1.

Name the quadrilateral ABCD, the coordinates of whose vertices are A(3, 5), B(1, 1), C(5, 3) and D(7, 7).(a) Square (b) Rhombus (c) Rectangle (d) Trapezium

Answer»

(b) Rhombus

AB = \(\sqrt{(3-1)^2+(5-1)^2}\) = \(\sqrt{4+16}\) = \(\sqrt{20}\) = \(2\sqrt5\)

BC = \(\sqrt{(1-5)^2+(1-3)^2}\) = \(\sqrt{16+4}\) = \(\sqrt{20}\) = \(2\sqrt5\)

CD = \(\sqrt{(5-7)^2+(3-7)^2}\) = \(\sqrt{4+16}\) = \(\sqrt{20}\) = \(2\sqrt5\)

AD = \(\sqrt{(3-7)^2+(5-7)^2}\) = \(\sqrt{16+4}\) = \(\sqrt{20}\) = \(2\sqrt5\)

AC = \(\sqrt{(3-5)^2+(5-3)^2}\) = \(\sqrt{4+4}\) = \(\sqrt{8}\) = \(2\sqrt2\)

BD = \(\sqrt{(1-7)^2+(1-7)^2}\) = \(\sqrt{36+36}\) = \(\sqrt{72}\) = \(6\sqrt2\)

Now, AB = BC = CD = AD ⇒ All sides are equal 

Also, AC ≠ BD ⇒ Diagonals are not equal. 

⇒ ABCD is a rhombus.



Discussion

No Comment Found

Related InterviewSolutions