InterviewSolution
Saved Bookmarks
| 1. |
निम्न फलनों का अवकलन गुणांक ज्ञात कीजिए- ` (i)log [ x + sqrt (x^(2) -a ^(2)) ]` ` (ii) log sin (ax+ b) ` `(iii) sin [ cos (2x+ 3) ]` (iv) log [ sin mx + cos nx ]` |
|
Answer» माना ` y= log [ x + sqrt (x^(2) -a^(2) ) ] ` माना ` x+ sqrt (x^(2) -a^(2) ) =t ` ` " " y = log t ` ` therefore " "(dy)/(dx) =(d)/(dt) log t* (d)/(dx) [ x+ sqrt( x^(2) -a^(2)]` ` " "= ( 1) /(t) [ (d)/(dx)x+ (d)/(dx) (x^(2) -a^(2) ) ^(1//2) ] ` पुनः ` x^(2)-a^(2) =t_1 ` ` therefore (dy)/(dx) =(1)/(t) [1+ (d)/(dt_1) t_1^(1//2) (d)/(dx) (x^(2) -a^(2) ) ]` ` " "= (1)/(t) [ 1+ (1)/( 2sqrt ( t_1) )(2x-0 ) ] =(1)/(t) [ 1+ (x)/(sqrt( x^(2) -a^(2)))] ` ` " "= [ (1) /(x+ sqrt (x^(2) -a^(2) ) )] [ (x+ sqrt(x^(2) -a^(2) )) /( sqrt( ( x^(2) -a^(2)) ) ]] ` ` " "= (1) /(sqrt( x^(2) -a^(2) ) ) ` माना ` y= log sin ( ax+ b) ` माना ` sin (ax+b) =t ` ` therefore " " y= log t ` ` therefore " "(dy)/(dx) =(d)/(dt) log t (d)/( dx) sin (ax+b) ` ` " "= (1)/(t) (d)/(dt) sin ""t_ 1 (d)/(dx) (ax+ b) ` जबकि ` ax+ b =t_1 =(1)/(t) cos t_1 *(a+0) ` ` " "(acos (ax+ b))/(sin (ax+ b) ) =a cot (ax+b) ` (iii) माना ` y= sin [cos (2x+ 3) ]` माना ` cos (2x+ 3) =t ` ` therefore " "y= sin t ` ` therefore " "(dy)/(dx) =(d)/(dt ) sin t (d)/(dx) cos (2x+ 3) ` ` " "=cost (d)/(dt_1) cos t_1"" (d)/(dx) (2x+ 3) ` जबकि ` (2x+3) =t_1` ` " "=- sin t_1 cost*2` ` =- 2cos [ cos (2x+ 3) sin (2x+ 3) ]` (iv) माना ` y= log [ sin mx + cos nx ]` माना ` sin mx + cos nx =t ` ` therefore " " y= log t ` ` therefore " "(dy)/(dx) =(d)/(dt) log t (d)/(dx ) [ sin mx+ cos nx]` ` " "= ( 1)/(t) (mcos mx -n sin nx ) ` ` " "= (mcos mx - n sin nx ) /( sin mx +cos nx ) ` |
|