1.

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​

Answer»

\large \bold{\red {{ \displaystyle \lim_{n \to \infty}} \frac{1}{n} \sum\limits_{r=1}^{2n} \frac{r}{ \sqrt{ {n}^{2} + {r}^{2}}}}}

\large \bold \red{{\red{{{  \implies\displaystyle \lim_{n \to \infty}}\sum\limits_{r=1}^{2n} \frac{ \frac{r}{n} }{ \sqrt{1 + ( \frac{r}{u} ) {}^{2} } } }}}}

\displaystyle \bold \red{\frac{1}{2}\int_{0}^{2}  \frac{2x}{ \sqrt{1+  {x}^{2}}} =  \frac{1}{2}\int_{1}^{5}m {}^{ \frac{ - 1}{2} } dm}

\bold \red{ { \displaystyle{=  \frac{1}{2} \frac{m {}^{ \frac{1}{2} } }{ \frac{1}{2} }  \int_{1}^{5} =  \sqrt{5} } - 1}}



Discussion

No Comment Found

Related InterviewSolutions