Saved Bookmarks
| 1. |
Not the answer ...I need full explanation |
|
Answer» Step-by-step explanation: LET the A.P. be a,a+d,a+2d,a+3d,...a+(n−2)d,a+(n−1)d. Sum of FIRST four terms =a+(a+d)+(a+2d)+(a+3d)=4a+6d Sum of last four terms =[a+(n−4)d]+[a+(n−3)d]+[a+(n−2)d]+[a+(n−1)d]⇒=4a+(4n−10)d According to the given condition, 4a+6d=56 ⇒4(11)+6d=56[Sincea=11(given)] ⇒6d=12⇒d=2 ∴4a+(4n−10)d=112 ⇒4(11)+(4n−10)2=112 ⇒(4n−10)2=68 ⇒4n−10=34 ⇒4n=44⇒n=11 |
|