1.

Page 8 (i) Assume that the storage tank is completely sealed and is to be filled with diesel from an opening at the top. Find the capacity, in m', of the tank, inclusive of the conical roof.​

Answer»

ANSWER:

hey here is your answer

pls MARK it as brainliest

Step-by-step EXPLANATION:

so \: here \: a \: storage \: tank \: constructed \: by \: a \: farmer \: is \: made \: up \: of \: two \: geometrical \: shapes \: namely \: cylinder(lower \: part) \: and \: cone(upper \: part) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (given)

so \: thus \: then \: radius \: of \: both \: cylindrical \: and \: conical \: shape \: would \: be \: equal \\ so \: let \: the \: radius \: of \: entire \: storage \: tank \: be \: r \: (inclusive \: of \: conical \: part \: and \: cylindrical) \\ here \: diameter(d) = 8.cm \\ thus \: radius(r) = 4.cm

moreover \\ for \: a \: cylindrical \: part \\ vertical \: height \: ie \: perpendicular \: height(h) = 3.5 \: cm \\  \\ for \: a \: conical \: part \:  \\ height(H) = 1.2 \: cm

so \: thus \: combined \: volume(inclusive \: volume) \: of \: storage \: tank = volume \: of \: cylindrical \: part + volume \: of \: conical \: part

so \: we \: know \: that \\ volume \: of \: conical \: part = 1/3 \times \pi \: r.square \: H \\ volume \: of \: cylindrical \: part = \pi \: r.squre \: h

thus \: then \\ volume \: of \: storage \: tank = 1/3 \times \pi \: r.square \: H + \pi \: r.square \: h \\  = \pi \: r.square(1/3.H + h) \\  = 3.14 \times (4).square (1/3 \times 1.2 + 3.5) \\  = 3.14 \times 16(0.4 + 3.5) \\  = 50.24 \times 3.9 \\  = 195.936 \\  \\ so \: volume \: of \: storage \: tank = 195.936 \: cubic.cm

but \: as \: we \: know \: that \\ 1l = 1000 \: cubic.cm \\ so \: 195.936 \: cubic.cm = 195.936 \times 1000 \: l \\  = 195936 \: l

so \: thus \: capacity \: of \: given \: storage \: tank \: is \: about \: 195936 \: l



Discussion

No Comment Found

Related InterviewSolutions