1.

फलन `int(dx)/(1-x-x^(2))` का x के सापेक्ष समाकलन कीजिए ।

Answer» माना `I=int(dx)/(1-x-x^(2))`
`=int(dx)/(1-(x+x^(2)+(1)/(4)+(1)/(4)))" "` (पूर्ण वर्ग बनाने पर )
`=int(dx)/(1+(1)/(4)-(x+(1)/(2))^(2))=int(dx)/(((sqrt5)/(2))-(x+(1)/(2))^(2))`
माना `x+(1)/(2)=t therefore dx=dt" तथा " (sqrt5)/(2)=a`
`therefore" "I=int(dt)/(a^(2)-t^(2))`
`=(1)/(2a)log((a+t)/(a-t))=(1)/(2(sqrt5)/(2))log[((sqrt5)/(2)+x+(1)/(2))/((sqrt5)/(2)-x-(1)/(2))]`
`" "` (x तथा a के मान रखने पर )
`=(1)/(sqrt5)log((sqrt5+2x+1)/(sqrt5-2x-1))`


Discussion

No Comment Found