1.

फलन `intsqrt((3-2x-2x^(2)))dx` का x के सापेक्ष समाकलन कीजिए ।

Answer» माना `" "I=intsqrt((3-2x-2x^(2)))dx`
`=intsqrt({3-2(x^(2)+x+(1)/(4)-(1)/(4))})dx" "` (पूर्ण वर्ग बनाने पर )
`=intsqrt(3-2(x+(1)/(2)))dx=intsqrt((7)/(2)-2(x+(1)/(2))^(2))dx`
`=sqrt2 int sqrt((sqrt7)/(2)^(2)-(x+(1)/(2))^(2))dx`
माना `(sqrt7)/(2)=a` तथा `x+(1)/(2)= t therefore dx=dt`
`I=sqrt2 int sqrt((a^(2)-t^(2)))dt`
`=sqrt2[(t)/(2)sqrt((a^(2)-t^(2)))+(a^(2))/(2)sin^(-1)((t)/(a))]`
`=sqrt2[((x+(1)/(2))/(2))sqrt((7)/(4)-(x+(1)/(2))^(2))+(7)/(8)sin^(_1)((x+(1)/(2))/((sqrt7)/(2)))]`
`=(2x+1)/(2sqrt2)sqrt(((7)/(4)-x^(2)-x-(1)/(4)))+(7)/(4sqrt2)sin^(-1)((2x+1)/(sqrt7))`
`=(2x+1)/(2sqrt2)[(3)/(2)-x^(2)-x]^((1)/(2))+(7)/(4sqrt2)sin^(-1)((2x+1)/(sqrt7))`
`=(2x+1)/(4)[3-2x^(2)-2x]^((1)/(2))+(7)/(4sqrt2)sin^(-1)((2x+1)/(sqrt7))`


Discussion

No Comment Found