| 1. |
Please solve 17 question |
|
Answer» x[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2XYZ Step-by-step explanation:sin⁻¹x+sin⁻¹y+sin⁻¹z= π sin⁻¹x = A =>x = SINA => √(1 - x²) = CosA sin⁻¹y = B => y = sinB => √(1 - y²) = CosB sin⁻¹z = C => z = sinC => √(1 - z²) = CosC A + B + C = π to be provedx[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2xyz SINACOSA + sinBcosB +sinCcosC = 2sinAsinBsinC multiplying by 2 both sides2sinAcosA + 2sinBcosB +2sinCcosC = 4sinAsinBsinC sin2A + sin2B + sin2C = 4sinAsinBsinC. LHS= sin2A + sin2B + sin2C = 2SIN(A + B)cos(A - B) + sin[2π- 2A - 2B] = 2sin(A + B)cos(A - B) - sin(2A + 2B) = 2sin(A + B)cos(A - B) - 2sin(A + B)cos(A + B) = 2sin(A + B)[cos(A - B) - cos(A + B)] = 2sin(A + B)⋅2[(-1)(-1) sinAsinB] = 4sin(π - C)⋅sinAsinB = 4sinAsinBsinC =RHS |
|