| 1. |
Pls tell this answer pls |
|
Answer» hope this helps u Given, PQ || ST, ∠PQR = 110° and ∠RST = 130° Draw a line AB parallel to ST through R. Now, ST || AB and SR is a transversal. So, ∠RST + ∠SRB = 180°[since, sum of the INTERIOR angles on the same side of the transversal is 180°] ⇒ 130° + ∠SRB = 180° ⇒ ∠SRB = 180°-130° ⇒ ∠SRB = 50° …(i) Since, PQ || ST and AB || ST, so PQ || AB and then QR is a transversal. So, ∠PQR + ∠QRA = 180° [since, sum of the interior angles on the same side of the transversal is 180°] ⇒ 110° + ∠QRA = 180° ⇒ ∠QRA = 180° -110° ⇒ ∠QRA=70° ..(ii) Now, ARB is a line. ∴ ∠QRA + ∠QRS + ∠SRB = 180° [by linear pair AXIOM] ⇒ = 70° + ∠QRS + 50° = 180° ⇒ 120° + ∠QRS = 180° ⇒ => ∠QRS = 180° -120° ⇒ ∠QRS = 60° |
|