Saved Bookmarks
| 1. |
Proove that:- 1 + sin tita / 1 - sin tita = (sec tita + tan tita )²Please answer as soon as possible |
|
Answer» Step-by-step EXPLANATION: Solving RHS (sec theta + TAN theta )² = sec²theta + 2 × sec theta × tan theta + tan² theta = 1/cos² theta + 2× (1/COS theta )× (sin theta / cos theta ) + sin² theta / cos² theta = 1/cos²theta + 2SIN theta / cos²theta + sin²theta / cos²theta = (1+2sintheta + sin²theta )/cos²theta =( 1 + sintheta )²/(1 - sin²theta ) By using algebraic formulae , we get , (1+sintheta ) ( 1+sintheta ) / (1 - sintheta )(1+ sintheta) = (1+ sintheta )/ (1 - sin theta ) |
|