1.

Prove by the principle of mathematical induction:52n + 2 – 24n – 25 is divisible by 576 for all n ϵ N

Answer»

Suppose P (n): 52n + 2 – 24n – 25 is divisible by 576

Now let us check for n = 1,

P (1): 52.1 + 2 – 24.1 – 25

: 625 – 49

: 576

P (n) is true for n = 1. Where, P (n) is divisible by 576

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): 52k + 2 – 24k – 25 is divisible by 576

: 52k + 2 – 24k – 25 = 576λ …. (i)

Now we have to prove,

52k + 4 – 24(k + 1) – 25 is divisible by 576

5(2k + 2) + 2 – 24(k + 1) – 25 = 576μ

Therefore,

= 5(2k + 2) + 2 – 24(k + 1) – 25

= 5(2k + 2).52 – 24k – 24 – 25

= (576λ + 24k + 25)25 – 24k– 49 by using equation (i)

= 25. 576λ + 576k + 576

= 576(25λ + k + 1)

= 576μ

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.



Discussion

No Comment Found