1.

Prove that :-_____________________​

Answer»

Answer:

12−(12–√×3–√2−12–√×12)2

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4=2−(2+3–√)4

12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4=2−(2+3–√)4=3–√4=RHS



Discussion

No Comment Found

Related InterviewSolutions