| 1. |
Prove that :-_____________________ |
|
Answer» Answer: 12−(12–√×3–√2−12–√×12)2 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√) 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28) 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4=2−(2+3–√)4 12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4=2−(2+3–√)4=3–√4=RHS |
|