InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `-4le5costheta+3cos(theta+pi/3)+3 ge10`, for all values of `theta`. |
|
Answer» We have, `5costheta+3costheta(theta+pi/3)=5costheta+3costhetacospi/3-3sinthetasinpi/3=13/2costheta-(3sqrt(3))/(2)sintheta` Since `-sqrt((13/2)^(2)+(-3sqrt(3)/2)^(2)) le13/2 costheta-(3sqrt(3))/(2)sintheta le sqrt((13/2)^(2)+(-3sqrt(3))/(2)^(2))` `rArr -7 le 13/2 costheta-(3sqrt(3))/(2)sintheta le7` `rArr -7 le5costheta+3cos(theta+pi/3)le7` for all `theta`. `rArr -7+3 le5costheta+3cos(theta+pi/3)+3 ge7 +3` for all `theta` `rArr -4 le5 costheta+3cos(theta+pi/3)+3 le10` for all `theta` |
|