1.

Prove that : (A ∪ B) x C = (A x C) = (A x C)∪ (B x C)

Answer»

To prove : (A ∪ B) × C = (A × C) ∪ (B × C) 

Proof : Let (x, y) be an arbitrary element of (A ∪ B) × C. 

⇒ (x, y) ∈ (A ∪ B) C 

Since,(x, y) are elements of Cartesian product of (A ∪ B) × C 

⇒ x ∈ (A ∪ B) and y ∈ C 

⇒ (x ∈ A or x∈B) and y ∈ C 

⇒ (x ∈ A and y ∈ C) or (x ∈ Band y ∈ C) 

⇒ (x, y) ∈ A × C or (x, y) ∈ B × C 

⇒ (x, y) ∈ (A × C) ∪ (B × C) …1 

Let (x, y) be an arbitrary element of (A × C) ∪ (B × C). 

⇒ (x, y) ∈ (A × C) ∪ (B × C) 

⇒ (x, y) ∈ (A × C) or (x, y) ∈ (B × C) 

⇒ (x ∈ A and y ∈ C) or (x ∈ Band y ϵ C) 

⇒ (x ∈ A or x ∈ B) and y ∈ C 

⇒ x ∈ (A ∪ B) and y ∈ C 

⇒ (x, y) ∈ (A ∪ B) × C …2 

From 1 and 2, we get : 

(A ∪ B) × C = (A × C) ∪ (B × C)



Discussion

No Comment Found

Related InterviewSolutions