1.

Prove that : (A ∩ B) x C = (A x C) ∩ (B x C)

Answer»

To prove : (A ∩ B) × C = (A × C) ∩ (B×C) 

Proof : Let (x, y) be an arbitrary element of (A ∩ B) × C. 

⇒ (x, y) ∈ (A ∩ B) × C 

Since, 

(x, y) are elements of Cartesian product of (A ∩ B)× C 

⇒ x ∈ (A ∩ B) and y ∈ C 

⇒ (x ∈ A and x ∈B) and y ∈ C 

⇒ (x ∈ A and y ∈ C) and (x ∈ Band y ∈ C) 

⇒ (x, y) ∈ A × C and (x, y) ∈ B × C 

⇒ (x, y) ∈ (A × C) ∩ (B × C) …1 

Let (x, y) be an arbitrary element of (A × C) ∩ (B × C). 

⇒ (x, y) ∈ (A × C) ∩ (B × C) 

⇒ (x, y) ∈ (A × C) and (x, y) ∈ (B × C) 

⇒ (x ∈A and y ∈ C) and (x ϵ Band y ∈ C) 

⇒ (x ∈A and x ∈ B) and y ∈ C 

⇒ x ∈ (A ∩ B) and y ∈ C 

⇒ (x, y) ∈ (A ∩ B) × C …2 

From 1 and 2, we get : 

(A ∩ B) × C = (A × C) ∩ (B × C)



Discussion

No Comment Found

Related InterviewSolutions