

InterviewSolution
Saved Bookmarks
1. |
Prove that `(C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot` |
Answer» We have, `(1+x)^(n)=.^(n)C_(0)+.^(n)C_(1)x+.^(n)C_(2)x^(2)+"....."+.^(n)C_(n)x^(n)` Dividing by x, we get `((1-x)^(n)-1)/(x) = .^(n)C_(1) + .^(n)C_(2)x+"....."+.^(n)C_(n)x^(n-1)` `:. 1+(1+x)+(1+x)^(2) + "...."+(1+x)^(n-1)` `= .^(n)C_(1) + .^(n)C_(2)x + "..." + .^(n)C_(n)x^(n-1)`. `:. underset(-1)overset(0)int(.^(n)C_(1) + .^(n)C_(2)x+C_(3)x^(2) + "...."+.^(n)C_(n) x^(n-1))dx` `= underset(-1)overset(0)int[1+(1+x)+"....."+(1+x)^(n-1)]dx` `rArr [.^(n)C_(1)x+(.^(n)C_(2)x^(2))/(2)+(.^(n)C_(3)x^(2))/(3)+"...."+(.^(n)C_(n)x^(n))/(n)]_(-1)^(0)` `= [x+((1+x)^(2))/(2)+((1+x)^(3))/(3)+"....."+((1+x)^(n))/(n)]_(-1)^(0)` `rArr (.^(n)C_(1))/(1)-(.^(n)C_(2))/(2)+(.^(n)C_(3))/(3)-"...."+((-1)^(n-1))/(n).^(n)C_(n)=1+1/2+1/3+"......"+1/n` |
|