InterviewSolution
Saved Bookmarks
| 1. |
Prove that:`cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2` |
|
Answer» `L.H.S. = cos^4((pi)/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)` `=cos^4((pi)/8)+cos^4((3pi)/8)+cos^4(pi-(3pi)/8)+cos^4(pi-(pi)/8)` `=cos^4((pi)/8)+cos^4((3pi)/8)+cos^4((3pi)/8)+cos^4((pi)/8)...[As cos(pi-theta) = costheta]` `=2(cos^4((pi)/8)+cos^4((3pi)/8))` `=2(cos^4((pi)/8)+sin^4(pi/2-(3pi)/8))` `=2(cos^4((pi)/8)+sin^4((pi)/8))` `=2((cos^2(pi/8)+sin^2(pi/8))^2 - 2sin^2(pi/8)cos^2(pi/8))` `=2(1-(2sin(pi/8)cos(pi/8))^2/2)` `=2(1-(sin(2*pi/8))^2/2)` `=2-sin^2(pi/4)` `=2-(1/sqrt2)^2` `=2-1/2` `=3/2 = R.H.S.` |
|