InterviewSolution
Saved Bookmarks
| 1. |
Prove that cos 510° cos 330° + sin 390° cos 120° = -1. |
|
Answer» The vales must be following: Cos 510° = cos (90° × 5 + 60° = - sin 60°) = \(\frac{-\sqrt 3}{2}\) Cos 330° = cos (90° × 3 + 60° = sin 60°) = sin 60° = \(\frac{-\sqrt 3}{2}\) Sin 390° = sin (90° × 4 + 30°) = sin 30° = \(\frac{1}{2}\) Cos 120° = cos (90° × 1 + 30°) = – sin 30° = \(\frac{-1}{2}\) Now, L.H.S = cos 510° cos 330° + sin 390° cos 120° = \((\frac{-\sqrt 2}{2})\)\((\frac{\sqrt 3}{2})\)+\((\frac{1}{2})\)\((\frac{-1}{2})\) = \((\frac{-3}{4})+(\frac{-1}{4})\) = \((\frac{-3}{4}+\frac{-1}{4})\) = − 1 = R. H. S |
|