1.

Prove that `costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))`

Answer» `cot^-1(x) = sin^-1(1/(sqrt(1+x^2)))` if `x gt 0`
`cot^-1(x) = sin^-1(pi-1/(sqrt(1+x^2)))` if `x lt 0`
In both cases,
`sin(cot^-1x) = 1/(sqrt(1+x^2)`
`=>tan^-1(sin(cot^-1x)) = tan^-1(1/(sqrt(1+x^2))) = cos^-1(sqrt(1+x^2)/sqrt(2+x^2))`
`:. costan^-1(sin(cot^-1x)) = coscos^-1(sqrt(1+x^2)/sqrt(2+x^2))`
`=>costan^-1(sin(cot^-1x)) = (sqrt(x^2+1)/sqrt(x^2+2)).`


Discussion

No Comment Found