InterviewSolution
Saved Bookmarks
| 1. |
Prove that function f : R → R, f (x) = x2 + x is a many-one into function? |
|
Answer» Many-one Let a1, a2 be any two arbitrary elements of R, then f (a1) = f (a2) ⇒ a12 + a1 = a22 + a2 ⇒ a12 – a22 + a1 + a2 = 0 ⇒ (a1 – a2) (a1 + a2) + (a1 – a2) = 0 ⇒ (a1 – a2) (a1 + a2 + 1) = 0 ⇒ a1 – a2 = 0 or a1 + a2 + 1 = 0 ⇒ a1 = a2 or a1 + a2 = – 1 ∈ R ⇒ Both the inferences can be true. So, f (a1) = f (a2) does not necessarily imply a1 = a2 ⇒ f is many-one. Into Let y = x2 + x, then for all y ∈ R, there does not exist all x ∈ R, as for y = – 1, – 2, ..., etc. There is no pre-image in R. Hence f is an into function. ⇒ f is many-one into function. |
|