1.

Prove that function f : R → R, f (x) = x2 + x is a many-one into function?

Answer»

Many-one 

Let a1, a2 be any two arbitrary elements of R, 

then f (a1) = f (a2) ⇒ a12 + a1 = a22 + a

⇒ a12 – a22 + a1 + a2 = 0 

⇒ (a1 – a2) (a1 + a2) + (a1 – a2) = 0 

⇒ (a1 – a2) (a1 + a2 + 1) = 0 

⇒ a1 – a2 = 0 or a1 + a2 + 1 = 0 

⇒ a1 = a2  or  a1 + a2 = – 1 ∈ R 

⇒ Both the inferences can be true. 

So, f (a1) = f (a2) does not necessarily imply a1 = a2 

⇒ f is many-one. 

Into 

Let y = x2 + x, then for all y ∈ R, there does not exist all x ∈ R, as for y = – 1, – 2, ..., etc. There is no pre-image in R. Hence f is an into function. 

⇒ f is many-one into function.



Discussion

No Comment Found