InterviewSolution
Saved Bookmarks
| 1. |
Prove that:(i) \(\sqrt{3\times5^{-3}}\div \sqrt[3]{{3}^{-1}}\sqrt5\) x \(\sqrt[6]{{3}\times5^6}=\frac{3}{5}\)(ii) \({9}^{\frac{3}{2}}-3\times5^0-(\frac{1}{81})^{-\frac{1}{2}}\) = 15(iii) \((\frac{1}{4})^{-2}-3\times8^{\frac{2}{3}}\times4^0+(\frac{9}{15})^{-\frac{1}{2}}\) = \(\frac{16}{3}\)(iv) \(\frac{2^{\frac{1}{2}}\times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{{10^{-\frac{1}{5}}}{}\times{5{\frac{3}{5}}}}\)\(\frac{3^{\frac{4}{3}\times {5}^{-\frac{7}{5}}}}{4^{\frac{3}{5}\times6}}\) |
|
Answer» (i) (31/2+1/6.5-3/2 +1) / (3-1/3.51/2) =(3 2/3.5-1/2) / (3-1/3.51/2) =(3 2/3 + 1/3) / (51/2 +1/2) =3/5 (ii) (3 2 )3/2 -3.1 – (1/92) -1/2 = 3 3 -3 -9 =27 -3 -9 =27-12 =15 (iii) 2 (-2)(-2) -3.82/3 +(3/4)-1 =2 4 -3.22 + 4/3 =16 -12 + 4/3 =16/3 (iv) [(2.3 1/3)/(2-1/5 52/5)] × (2-1/5.3)/ (34/3.57/5) = 2.3 1/3 +1 -4/3 / 52/5-7/5 = 2.5 =10 |
|