1.

Prove that inverse of a skew-symmetric matrix (if it exists) is skew-symmetric.

Answer» A is skew-symmetric, then `A^(T)=-A`.
`:. (A^(-1))^(T)=(A^(T))^(-1)=(-A)^(-1) =-A^(-1)`
Thus, `A^(-1)` is skew-symmetric.


Discussion

No Comment Found

Related InterviewSolutions