

InterviewSolution
Saved Bookmarks
1. |
Prove that inverse of a skew-symmetric matrix (if it exists) is skew-symmetric. |
Answer» A is skew-symmetric, then `A^(T)=-A`. `:. (A^(-1))^(T)=(A^(T))^(-1)=(-A)^(-1) =-A^(-1)` Thus, `A^(-1)` is skew-symmetric. |
|