1.

Prove that \(\lim\limits_{x \to a^+}\) [x] = [a] for all a ∈ R. Also, prove that \(\lim\limits_{x \to 1^-}\)[x] = 0lim [x], x ∈ a+ = [a]

Answer»

To Prove : lim [x], x ∈ a+ = [a]

L.H.S = \(\lim\limits_{x \to a^+}\) [x] = \(\lim\limits_{h \to 0}\)[a+h] = [a]

(Since, [a + h] = [a])

Hence, Proved. 

Also, 

To prove : \(\lim\limits_{x \to 1^-}\) [x] = 0

L.H.S = \(\lim\limits_{x \to 1^-}\) [x] 

\(\lim\limits_{h \to 0}\) [1-h]

= 0

(Since, [1 – h] = 0)

Hence, Proved.



Discussion

No Comment Found