1.

Prove that √sec2θ + cosec2θ = tan θ + cot θ .

Answer»

TO PROVE :

\\ \implies { \bold{ \sqrt{ { \sec}^{2}  \theta + {cosec}^{2} \theta } =  \tan( \theta) +  \cot( \theta) }}  \\

SOLUTION :

• Let's TAKE L.H.S. –

\\ \:  \:  =  \:  \: { \bold{ \sqrt{ { \sec}^{2}  \theta + {cosec}^{2} \theta }}}  \\

▪︎ Using identity –

\\ \:  \:  \dashrightarrow\:  \: { \bold{ { \sec}^{2}  \theta = 1 +  { \tan}^{2} \theta}}  \\

\\ \:  \:  \dashrightarrow\:  \: { \bold{ { cosec}^{2}  \theta = 1 +  { \cot}^{2} \theta}}  \\

• So that –

\\ \:  \:  =  \:  \: { \bold{ \sqrt{1 +  { \tan}^{2} \theta+1 +  { \cot}^{2} \theta}}}  \\

\\ \:  \:  =  \:  \: { \bold{ \sqrt{ { \tan}^{2} \theta+2+  { \cot}^{2} \theta}}}  \\

• We should WRITE this as –

\\ \:  \:  =  \:  \: { \bold{ \sqrt{ { \tan}^{2} \theta+2 \tan \theta \cot \theta  +  { \cot}^{2} \theta}}}  \\

• Using identity –

\\ \:  \:  \dashrightarrow\:  \: { \bold{ {a}^{2} + 2ab +  {b}^{2}  = {(a + b)}^{2} }}  \\

\\ \:  \:  =  \:  \: { \bold{ \sqrt{{( \tan \theta +  \cot \theta )}^{2}}}}  \\

\\ \:  \:  =  \:  \: { \bold{  \tan \theta +  \cot \theta }}  \\

\\ \:  \:  =  \:  \: { \bold{R.H.S. }}  \\

\\ \: \: \: \: \: { \underbrace{ \bold{Hence \:  \: proved }}}  \\



Discussion

No Comment Found

Related InterviewSolutions