InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `(sec4A-1)/(sec8A-1)=tan2A. cot8A` |
|
Answer» LHS= `(sec4A-1)/(sec8A-1)` `=(1/(cos4A)-1)/(cos8A)=((1-cos4A)/(cos4A))/((1-cos8A)/(cos8A))` `(1-cos4A)/(1-cos8A).(cos8A)/(cos4A) (therefore 1-cos2theta=2sin^(2)theta)` `(2sin^(2)2A)/(2sin^(2)4A).(cos8A)/(cos4A)` `=(2sin^(2)2A.cos8A)/(sin4A.(2sin4Acos4A))` `=(2sin^(2)2A.cos8A)/((2sin2Acos2A)sin8A)` `(sin2A)/(cos2A).(cos8A)/(sin8A)` `=tan2A.cot8A` =RHS Hence Proved |
|