1.

Prove that:sec⁶A - tan⁶A = 1 + 3 tan²A + 3 tan⁴A​

Answer»

\texttt{\textsf{\large{\underline{Solution}:}}}

We have to prove:

→ sec⁶A - tan⁶A = 1 + 3 tan²A + 3 tan⁴A

Taking LHS, we get:

= sec⁶A - tan⁶A

= (sec²A)³ - (tan²A)³

Using identity a³ - b³ = (a - b)³ + 3ab(a - b), we get:

= (sec²A - tan²A)³ + 3 × sec²A × tan²A(sec²A - tan²A)

We know that:

→ sec²θ - tan²θ = 1

Therefore, we get:

= 1³ + 3 × sec²A × tan²A

= 1 + 3 × (1 + tan²A) × tan²A   [sec²θ = 1 + tan²θ]

= 1 + 3 × (tan²A + tan⁴A)

= 1 + 3 tan²A + 3 tan⁴A

= RHS (HENCE Proved)

\texttt{\textsf{\large{\underline{Know More}:}}}

1. Relationship between SIDES.

  • sin(x) = Height/Hypotenuse.
  • COS(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square FORMULAE.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.


Discussion

No Comment Found

Related InterviewSolutions