Saved Bookmarks
| 1. |
Prove that:sec⁶A - tan⁶A = 1 + 3 tan²A + 3 tan⁴A |
|
Answer» We have to prove: → sec⁶A - tan⁶A = 1 + 3 tan²A + 3 tan⁴A Taking LHS, we get: = sec⁶A - tan⁶A = (sec²A)³ - (tan²A)³ Using identity a³ - b³ = (a - b)³ + 3ab(a - b), we get: = (sec²A - tan²A)³ + 3 × sec²A × tan²A(sec²A - tan²A) We know that: → sec²θ - tan²θ = 1 Therefore, we get: = 1³ + 3 × sec²A × tan²A = 1 + 3 × (1 + tan²A) × tan²A [sec²θ = 1 + tan²θ] = 1 + 3 × (tan²A + tan⁴A) = 1 + 3 tan²A + 3 tan⁴A = RHS (HENCE Proved) 1. Relationship between SIDES.
2. Square FORMULAE.
3. Reciprocal Relationship.
4. Cofunction identities.
|
|