Saved Bookmarks
| 1. |
Prove that sin(a+b)sin(a-b)=sin^2a-sin^2b |
|
Answer» -STEP explanation:sin(A + B)sin(A − B) = sin² A – sin² B -LHS= sin(A + B)sin(A - B)Recall: sin(a - b) = sin a COS ß- cos a sin And sin(a + 3) = sin a cos 3 + cos a sin 3(sin A cos B+ cos A sin B)X (sin A cos B - cos A sin B) = sin² A cos² B - cos² A sin² BRecall: sin² a + cos² a = 1 From above, we can then assume correctly that:sin² a = 1 cos² a AND -- cos² a = 1 - sin² a= sin² A (1 - sin² B) – sin² B(1 – sin² A)sin² A - sin² A sin² B – sin² B + sin² A sin² B= sin² A - sin² B= RHS |
|