InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)` |
|
Answer» LHS =`(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))` `=(sin(A+C)+sin(A-C)+2sinA)/(sin(B+C)+sin(B-C)+2sinB)` `(2sin(A+C+A-C)/(2).cos(A+C-A+C)/(2)+2sinA)/(2sin((B+C+B-C)/2).cos(B+C-B+C)/(2)+2sinB)` `=(2sinAcosC+2sinA)/(2sinBcosC+2sinB)` `(sinA(2cosC+2))/(sinB(2cosC+2))` `=(sinA(2cosC+2))/(sinB(2cosC+2))` `=(sinA)/(sinB)` =RHS Hence Proved. |
|