1.

Prove that :\(sin\cfrac{8\pi}3cos\cfrac{23\pi}6+cos\cfrac{13\pi}3sin\cfrac{35\pi}6=\cfrac12\)

Answer»

LHS\(sin\cfrac{8\pi}3cos\cfrac{23\pi}6+cos\cfrac{13\pi}3sin\cfrac{35\pi}6\)

= sin 480° cos 690° + cos 780° sin 1050°

= sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°)

We know that when n is odd, sin → cos and cos → sin.

= cos 30° sin 60° + cos 60° [-cos 60°]

\(\cfrac{\sqrt3}2\times\cfrac{\sqrt3}2-\cfrac12\times\cfrac12\)

= 3/4 - 1/4

= 2/4

= 1/2

= RHS

Hence proved.



Discussion

No Comment Found