InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `sin12^(@)sin48^(@)sin54^(@)=1/8` |
|
Answer» LHS `=sin12^(@)sin48^(@)sin54^(@)` `=1/2.(2sin48^(@)sin12^(@)).sin(90^(@)-36^(@))` `=1/2[cos(48^(@)-12^(@))-cos(48^(@)+12^(@))].cos36^(@)` `=1/2[cos(48^(@)-12^(@))-cos(48^(@)+12^(@))].cos36^(@)` `=1/2[cos36^(@)-cos60^(@)].cos36^(@)` `=1/2[(sqrt(5)+1)/(4)-1/2].((sqrt(5)+1)/(3))` `=1/2(sqrt(5)+1-2)/(4).(sqrt(5)+1)/(4)` `=((sqrt(5)-1)(sqrt(5)+1))/(32)` `=(5-1)/(32)=4/(32)=1/8` = RHS Hence Proved. |
|