InterviewSolution
Saved Bookmarks
| 1. |
Prove that `tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi`. |
|
Answer» We have, LHS `=tan^(-1)((cosx-sinx)/(cosx+sinx))` `=tan^(-1)((1-tanx)/(1+tanx))` [dividing num. and denom. By `cos x`] `=tan^(-1){tan(pi/4-x)}=(pi/4-x)` RHS. `therefore tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x)`. |
|