InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `tan^(-1){pi/4+1/2 cos^(-1)a/b}+tan{pi/4-1/2 cos^(-1)a/b}=(2b)/a` |
|
Answer» Let `cos^(-1)a/b)=theta`. Then, `a/b=costheta`. `therefore` LHS `=tan(pi/4+1/1theta}=tan{pi/4-1/2theta}` `=(1+tan(theta/2))/(1-tan(theta/2))+(1-tan(theta/2))/(1+tan(theta/2))` `=(1+tan(theta/2)^(2)+1-tan(theta/2)^(2))/(1-tan^(2)theta/2)` `=2{(1+tan^(2)(theta/2))/(1-tan^(2)theta/2}=2/(costheta)=(2b)/a`=RHS Hence, LHS=RHS. |
|