1.

Prove that`tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1`

Answer» `L.H.S. = tan^-1[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]`
`=tan^-1[(sqrt(1+x)(1-sqrt(1-x)/sqrt(1+x)))/(sqrt(1+x)(1+sqrt(1-x)/sqrt(1+x)))]`
`=tan^-1[(1-sqrt(1-x)/sqrt(1+x))/(1+sqrt(1-x)/sqrt(1+x))]`
As, `tan^-1x-tan^-1y = (x-y)/(1+xy)`
So, our expression becomes,
`=tan^-1(1)+tan^-1(sqrt(1-x)/sqrt(1+x))`
`=pi/4+1/2(2tan^-1(sqrt(1-x)/sqrt(1+x)))`
Also, `2tan^-1y = cos^-1((1-y^2)/(1+y^2))`
So, our expression becomes,
`= pi/4+1/2cos^-1((1-(sqrt(1-x)/sqrt(1+x))^2)/(1+(sqrt(1-x)/sqrt(1+x))^2))`
`=pi/4+1/2cos^-1((1+x-1+x)/(1+x+1-x))`
`=pi/4+1/2cos^-1((2x)/2)`
`=pi/4+1/2cos^-1(x)=R.H.S.`


Discussion

No Comment Found