InterviewSolution
Saved Bookmarks
| 1. |
Prove that `tan 70^(@)=cot70^(@)++2cot40^(@)` |
|
Answer» LHS `=tan 70^(@)=tan(20^(@)+50^(@))=(tan20^(@)+tan 50^(@))/(1-tan20^(@)tan.50^(@))` or `tan70^(@)-tan20^(@)tan50^(@)tan70^(@)=tan20^(@)+tan50^(@)` or `tan70^(@)= tan70^(@)tan50^(@)tan20^(@)+tan20^(@)+tan50^(@)=2tan 50^(@)+tan20^(@)` `=cot70^(@)+2cot40^(@)=RHS`. |
|