1.

Prove that (tan A + sin A)/(tan A - sin A) = (sec A + 1)/(sec A - 1).​

Answer»

\huge\underline{\rm{☆To \ Prove}}

\rm{\dfrac{\ tanA + \ sinA}{\ tanA - \ sinA} = \dfrac{\ secA + 1}{\ secA - 1}}

\\

\rm{LHS = \dfrac{\ tanA + \ sinA}{\ tanA - \ sinA}} \\  \\

\rm{ = \dfrac{\dfrac{\ sinA}{\ cosA} + \ sinA}{\dfrac{\ sinA}{\ cosA} - \ sinA}} \\  \\

\rm{ = \dfrac{  \dfrac{ \ sinA +  \ sinA  \ cosA  }{ \ cosA }}{\dfrac{ \ sinA -  \ sinA \ cosA}{ \ cosA}}} \\  \\

\rm{ = \dfrac{\ sinA + \ sinA\ cosA}{\ sinA - \ sinA \ cosA}} \\  \\

\rm{ = \dfrac{\ sinA(1 + \ cosA}{\ sinA(1 - \  cosA}} \\  \\

\rm{ = \dfrac{\ sinA + \ dfrac{1}{\ secA}}{\ sinA - \dfrac{1}{\ secA}}} \\  \\

\rm{ = \dfrac{\dfrac{\ secA + 1}{\ secA}}{\dfrac{\ secA - 1}{\ secA}}} \\  \\

\rm{ = \dfrac{\ secA + 1}{\ secA - 1}= RHS} \\  \\

\red{\boxed{\rm{Hence \ Proved✔}}}

\\

#NAWABZAADI



Discussion

No Comment Found

Related InterviewSolutions