InterviewSolution
Saved Bookmarks
| 1. |
Prove that the coefficient of `x^n`in the expansion of `1/((1-x)(1-2x)(1-3x))i s1/2(3^(n+2)-2^(n+3)+1)dot` |
|
Answer» We have `(1)/((1-x)(1-2x)(1-3x))` ` = (1)/(2(1-x))- (4)/(1-2x)+(9)/(2(1-3x))` [By resolving into partial fractions] `= 1/2(1-x)^(-1)-4(1-2x)^(-1)+9/2(1-3x)^(-1)` `= 1/2(1+x+x^(2)+"….."+x^(n)+"…..")-4(1+2x+(2x)^(2)+"…."+(2x)^(n)+"….")+9/2(1+(3x)+(3x)^(2)+"...."+(3x)^(n)+"......")` `:.` Coefficient of `x^(n) = 1/2[1-8.2^(n)+9.3^(n)]` `=1/2[1-2^(n+3)+3^(n+2)]` |
|