1.

Prove that the general solution of `sin"theta"=sin"alpha"`is given by : `theta=npi+(-1)^nalpha,n in Zdot`

Answer» `sin theta = sin alpha`
`=>sin theta - sinalpha= 0`
`=>2sin((theta-alpha)/2)cos((theta+alpha)/2) = 0`
`=>sin((theta-alpha)/2) = 0 and cos((theta+alpha)/2) = 0`
`=> (theta-alpha)/2 = mpi and (theta+alpha)/2 = (2m+1)pi/2`
`=>theta = 2mpi+alpha and theta = 2mpi+pi-alpha`
So, the general solution will be `theta = npi +(-1)alpha.`


Discussion

No Comment Found