InterviewSolution
Saved Bookmarks
| 1. |
Prove that the general solution of `sin"theta"=sin"alpha"`is given by : `theta=npi+(-1)^nalpha,n in Zdot` |
|
Answer» `sin theta = sin alpha` `=>sin theta - sinalpha= 0` `=>2sin((theta-alpha)/2)cos((theta+alpha)/2) = 0` `=>sin((theta-alpha)/2) = 0 and cos((theta+alpha)/2) = 0` `=> (theta-alpha)/2 = mpi and (theta+alpha)/2 = (2m+1)pi/2` `=>theta = 2mpi+alpha and theta = 2mpi+pi-alpha` So, the general solution will be `theta = npi +(-1)alpha.` |
|