1.

Prove that `underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1`.

Answer» `underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum)).^(n)C_(s).^(s)C_(r)=underset(s=1)overset(n)sum.^(n)C_(s)(.^(s)C_(0)+.^(s)C_(1)+.^(s)C_(2)+"....."+.^(s)C_(s))`
`= underset(s=1)overset(n)sum.^(n)C_(s)2^(s)`
`= underset(s=0)overset(n)sum.^(n)C_(s)2^(s)-.^(n)C_(0)2^(0)`
`= (1+2)^(n)-1`
`= 3^(n) - 1`


Discussion

No Comment Found

Related InterviewSolutions