

InterviewSolution
Saved Bookmarks
1. |
Prove that `underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1`. |
Answer» `underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum)).^(n)C_(s).^(s)C_(r)=underset(s=1)overset(n)sum.^(n)C_(s)(.^(s)C_(0)+.^(s)C_(1)+.^(s)C_(2)+"....."+.^(s)C_(s))` `= underset(s=1)overset(n)sum.^(n)C_(s)2^(s)` `= underset(s=0)overset(n)sum.^(n)C_(s)2^(s)-.^(n)C_(0)2^(0)` `= (1+2)^(n)-1` `= 3^(n) - 1` |
|