InterviewSolution
Saved Bookmarks
| 1. |
Prove that `|z_1+z_2|^2=|z_1|^2, ifz_1//z_2`is purely imaginary. |
|
Answer» Given `|z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)` or `|z_(1)|^(2)+|z_(2)|^(2)+z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=|z_(1)|^(2)+|z_(2)|^(2)` or `z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=0` or `(z_(1))/(z_(2))+(bar(z)_(1))/(bar(z)_(2))=0` or `(z_(1))/(z_(2))+(bar(z)_(1))/(z_(2))=0` Hence, `(z_(1))/(z_(2))` is purely imaginary |
|