1.

Prove the following by the principle ofmathematical induction: ` 1. 3+2. 4+3. 5++(2n-1)(2n+1)=(n(4n^2+6n-1))/3`

Answer» Let the given statement be P(n). Then,
`P(n): 1*3+3*5+5*7+…+(2n-1)(2n+1)= 1/3 n(4n^(2)+6n-1)`.
When n = 1, we have
LHS = ` 1*3 and RHS = 1/3 xx 1 xx(4xx1^(2)+6xx1-1)=1/3 xx 1 xx 9 = 3`.
` :. ` LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
`P(k): 1*3+3*5+5*7+...+(2K-1)(2k+1)= 1/3 k(4k^(2)+6k-1)." "` ...(i)
Now, ` 1*3+3*5+5*7+...+(2k-1)(2k+1)+{2(k+1)-1}{2(k+1)+1}`
` ={1*3+3*5+5*7+...+(2k-1)(2k+1)}+(2k+1)(2k+3)`
` = 1/3 k(4k^(2)+6k-1)+(2k+1)(2k+3)" "`[using (i)]
` = 1/3 [(4k^(3)+6k^(2)-k)+3(4k^(2)+8k+3)] = 1/3 (4k^(3)+18k^(2)+23k+9)`
` = 1/3 (k+1)(4k^(2)+14k+9)= 1/3 (k+1)[4(k+1)^(2)+6(k+1)-1]`.
` :. P(k+1): 1*3+3*5+5*7+...+{2(k+1)-1}{2(k+1)+1}`
` = 1/3 (k+1){4(k+1)^(2)+6(k+1)-1}`.
Thus, P(k+1) is true, whenever P(k) is true.
`:. ` P(1) is true and P(k+1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction , we have
` 1*3+3*5+5*7+...+(2n-1)(2n+1) = 1/3 n (4n^(2)+6n-1)" for all " n in N`.


Discussion

No Comment Found